AN INEQUALITY FOR THE DISTRIBUTION OF NUMBERS FREE OF SMALL PRIME FACTORS

Kai (Steve) Fan
Department of Mathematics, Dartmouth College, Hanover, New Hampshire
steve.fan.gr@dartmouth.edu

Received: 10/29/21, Accepted: 2/9/22, Published: 2/28/22

Abstract

Let $1<z \leq x$ be arbitrary real numbers, and denote by $\Phi(x, z)$ the number of positive integers up to x whose prime divisors are all greater than z. In this note we prove the sharp inequality $\Phi(x, z)<x / \log z$ for all $1<z \leq x$, improving upon the classical sieve bound $\Phi(x, z) \ll x / \log z$.

1. The Result

One of the fundamental problems in sieve theory is the estimation of

$$
S(\mathcal{A}, \mathcal{P}, z)=\#\{n \in \mathcal{A}: \operatorname{gcd}(n, P(z))=1\}
$$

where $\mathcal{A} \subseteq \mathbb{N}$ is a subset of positive integers, \mathcal{P} is a subset of primes, $z>1$ is a positive real number, and

$$
P(z):=\prod_{p \in \mathcal{P} \cap[1, z]} p .
$$

When $\mathcal{A}=\mathbb{N} \cap[1, x]$ and \mathcal{P} is the set of all primes, where $x \geq z$ is a real number, the quantity $S(\mathcal{A}, \mathcal{P}, z)$ yields the number of positive integers up to x whose prime divisors are all greater than z. Throughout this paper we shall denote this quantity by $\Phi(x, z)$, namely,

$$
\Phi(x, z)=\sum_{\substack{n \leq x \\ p \mid n \Rightarrow p>z}} 1
$$

By the inclusion-exclusion principle we have the explicit formula

$$
\Phi(x, z)=\sum_{d \mid P(z)} \mu(d)\left\lfloor\frac{x}{d}\right\rfloor
$$

where $\lfloor a\rfloor$ denotes the integer part of a for any $a \in \mathbb{R}$ and μ is the Möbius function. This is the starting point of the sieve of Eratosthenes. When z is fairly small in
comparison with x but tending to infinity, say $z=x^{o(1)}$, it is easy to see, by the fundamental lemma of either Brun's sieve [7, Theorem 2.5] or Selberg's sieve [7, Theorem 7.2], together with a classical theorem of Mertens [9, Theorem 429], that

$$
\begin{equation*}
\Phi(x, z) \sim x \prod_{p \leq z}\left(1-\frac{1}{p}\right) \sim \frac{e^{-\gamma} x}{\log z} \tag{1}
\end{equation*}
$$

where $\gamma=0.57721 \ldots$ is Euler's constant.
Around 70 years ago, Buchstab and de Bruijn studied the distribution of uncancelled elements in the sieve of Eratostenes. Setting $u:=\log x / \log z$ so that $z=x^{1 / u}$, Buchstab [3] showed that for any fixed $u>1$,

$$
\Phi(x, z) \sim x e^{\gamma} \omega(u) \prod_{p \leq z}\left(1-\frac{1}{p}\right) \sim \frac{\omega(u) x}{\log z}
$$

as $x \rightarrow \infty$, where $\omega:[1, \infty) \rightarrow(0, \infty)$ is the Buchstab function which is defined as the unique continuous solution to the delay differential equation

$$
\frac{d}{d u}(u \omega(u))=\omega(u-1), \quad u \geq 2
$$

subject to the initial condition $\omega(u)=1 / u$ for $1 \leq u \leq 2$. It is convenient to extend the definition of $\omega(u)$ by setting $\omega(u):=0$ for $u<1$. Comparing this result with (1) we see that the asymptotic behavior of $\Phi(x, z)$ is somewhat irregular. Maier [11] gave an interesting application of Buchstab's result to the distribution of primes in short intervals. Using the fact that $\omega(u)-e^{-\gamma}$ changes sign in every interval of length one, he showed that for any given $\lambda>1$ one has

$$
\begin{aligned}
& \limsup _{x \rightarrow \infty} \frac{\pi\left(x+(\log x)^{\lambda}\right)}{(\log x)^{\lambda-1}}>1 \\
& \liminf _{x \rightarrow \infty} \frac{\pi\left(x+(\log x)^{\lambda}\right)}{(\log x)^{\lambda-1}}<1
\end{aligned}
$$

where $\pi(x)$ is the prime counting function. Building on Buchstab's work, de Bruijn [1] showed, among other things, that $\omega(u) \rightarrow e^{-\gamma}$ as $u \rightarrow \infty$ and that

$$
\begin{equation*}
\Phi(x, z)=\mu_{z}(u) e^{\gamma} x \log z \prod_{p \leq z}\left(1-\frac{1}{p}\right)+O\left(x \exp \left(-(\log z)^{3 / 5-\epsilon}\right)\right) \tag{2}
\end{equation*}
$$

for $x \geq z \geq 2$, where $\epsilon>0$ is any given real number and

$$
\mu_{z}(u):=\int_{0}^{\infty} \omega(u-v) z^{-v} d v
$$

In fact, $\omega(u)$ converges to $e^{-\gamma}$ quite rapidly, as one can see from the graph of $\omega(u)$ below generated by Mathematica.

INTEGERS: 22 (2022)

Indeed, Buchstab [3] showed that

$$
\left|\omega(u)-e^{-\gamma}\right| \leq \frac{\rho(u-1)}{u}
$$

for all $u \geq 1$, where $\rho(u)$ is the Dickman-de Bruijn function which is defined to be the unique continuous solution to the delay differential equation

$$
u \rho^{\prime}(u)+\rho(u-1)=0, \quad u>1
$$

with the initial condition $\rho(u)=1$ for $0<u \leq 1$. Combined with an estimate of de Bruijn on $\rho(u)$ [2, Equ (1.8)] this shows that $\left|\omega(u)-e^{-\gamma}\right|$ is

$$
\leq \exp \left(-u\left(\log u+\log \log u-1+\frac{\log \log u-1}{\log u}+O\left(\left(\frac{\log \log u}{\log u}\right)^{2}\right)\right)\right.
$$

Finer results on the asymptotic behavior of $\Phi(x, z)$ have been found by Tenenbaum. The reader is referred to his book [14, Chapter III.6] for detailed discussions on this subject.

In the present note we are interested in upper bounds for $\Phi(x, z)$ that are applicable in wide ranges. For instance, a theorem of Hall on the distribution of the mean values of multiplicative functions [8] allows us to obtain upper bounds when z and x are sufficiently large. To state his result, let f denote a multiplicative
function such that $0 \leq f(n) \leq 1$ for all $n \in \mathbb{N}$, and define

$$
\Theta(f, x):=\prod_{p \leq x}\left(1-\frac{1}{p}\right)\left(\sum_{k=0}^{\infty} \frac{f\left(p^{k}\right)}{p^{k}}\right)
$$

Hall [8] showed that

$$
\begin{equation*}
\frac{1}{x} \sum_{n \leq x} f(n) \leq e^{\gamma}\left(1+O\left(\frac{\log \log x}{\log x}\right)\right) \Theta(f, x) \tag{3}
\end{equation*}
$$

This result was later improved by Hildebrand [10], and Granville and Soundararajan $[5,6]$ have developed a method that connects the mean values of complex multiplicative functions taking values in the closed unit disk with the continuous solutions to certain integral equations. Taking f to be the characteristic function of the set of $n \in \mathbb{N}$ with $\operatorname{gcd}(n, P(z))=1$, we obtain at once from (3) that for any fixed $\epsilon>0$,

$$
\Phi(x, z) \leq e^{\gamma} x\left(1+O\left(\frac{\log \log x}{\log x}\right)\right) \prod_{p \leq z}\left(1-\frac{1}{p}\right)<(1+\epsilon) \frac{x}{\log z}
$$

for sufficiently large z. The object of this note is to establish the following theorem which shows that the above inequality, with the term ϵ discarded, holds uniformly for all $1<z \leq x$.

Theorem. For any $1<z \leq x$ we have

$$
\begin{equation*}
\Phi(x, z)<\frac{x}{\log z} \tag{4}
\end{equation*}
$$

Moreover, we have

$$
\begin{equation*}
\Phi(x, z)<\frac{x}{\log z}-\frac{x}{2 \log ^{2} z} \tag{5}
\end{equation*}
$$

when $z \geq \max (3, \sqrt{x})$ and

$$
\begin{equation*}
\Phi(x, z)<\frac{2 x}{3 \log z} \tag{6}
\end{equation*}
$$

when $\max \left(2, x^{2 / 5}\right) \leq z \leq \sqrt{x}$.
Proof. The case $1<z<2$ is trivial, since

$$
\Phi(x) \leq x<\frac{x}{\log 2}<\frac{x}{\log z}
$$

For $2 \leq z<3$ we have

$$
\Phi(x, z) \leq \frac{x+1}{2}<\frac{x}{\log 3}<\frac{x}{\log z}
$$

This proves (4) for $1<z<3$. To prove (6) for $2 \leq z<3$, note that $x \geq 4$ and that

$$
\Phi(x, z) \leq \frac{x+1}{2}<\frac{2 x}{3 \log 3}<\frac{2 x}{3 \log z}
$$

when $x \geq 5$. Moreover,

$$
\Phi(x, z)=2<\frac{2 x}{3 \log 3}<\frac{2 x}{3 \log z}
$$

when $4 \leq x<5$. Hence (6) holds for $2 \leq z<3$.
From now on we shall suppose that $z \geq 3$. Put $y:=x^{2 / 5}$. By the arithmetic large sieve [4, Corollary 9.9] we have

$$
\Phi(x, z) \leq \frac{x+z^{2}}{S(z)}
$$

where

$$
S(z):=\sum_{n \leq z} \frac{\mu(n)^{2}}{\varphi(n)}
$$

and φ is Euler's totient function. Montgomery and Vaughan [12, Lemma 7] showed that $S(z) \geq \log z+1.07$ for all $z \geq 6$. Combining this with the precise values of $S(z)$ for $3 \leq z<6$, we find that $S(z) \geq \log z+0.89$ for all $z \geq 3$. Thus we have

$$
\Phi(x, z) \leq \frac{x+z^{2}}{\log z+0.89}<\frac{x}{\log z}
$$

whenever $z^{2} \log z<0.89 x$, which is easily seen to be true when $3 \leq z \leq y$. This proves (4) in the range $3 \leq z \leq y$.

Now we treat the case $z \geq \sqrt{x}$. By Theorem 1 and the associated Corollary 1 in [13] we have

$$
\Phi(x, z)=1+\pi(x)-\pi(z)<1+\frac{x}{\log x}+\frac{3 x}{2 \log ^{2} x}-\frac{z}{\log z}
$$

whenever $x \geq 289$. We compute

$$
\frac{\partial}{\partial z}\left(\frac{x+z}{\log z}-\frac{x}{2 \log ^{2} z}\right)=\frac{(z \log z-x)(\log z-1)}{z \log ^{3} z}
$$

This implies that as $z \in[3, x]$ varies, the quantity

$$
\frac{x+z}{\log z}-\frac{x}{2 \log ^{2} z}
$$

is minimized at $z=z_{0}$, where $z_{0} \in[3, x]$ satisfies the equation $z_{0} \log z_{0}=x$. Hence

$$
\frac{x+z}{\log z}-\frac{x}{2 \log ^{2} z} \geq z_{0}+\frac{z_{0}}{2 \log z_{0}}>z_{0}+\frac{z_{0} \log z_{0}}{2 \log ^{2}\left(z_{0} \log z_{0}\right)}
$$

Now (5) will follow if we can show

$$
1+\frac{z_{0} \log z_{0}}{\log \left(z_{0} \log z_{0}\right)}+\frac{3 z_{0} \log z_{0}}{2 \log ^{2}\left(z_{0} \log z_{0}\right)} \leq z_{0}+\frac{z_{0} \log z_{0}}{2 \log ^{2}\left(z_{0} \log z_{0}\right)}
$$

Simple computation shows that this is equivalent to

$$
\left(\log \log z_{0}-1\right) \log z_{0}+\log ^{2} \log z_{0}-\frac{\log ^{2}\left(z_{0} \log z_{0}\right)}{z_{0}} \geq 0
$$

which clearly holds if $\log \log z_{0} \geq 1$ and $\left(\sqrt{z_{0}}-1\right) \log \log z_{0} \geq \log z_{0}$. Since $\sqrt{t}-1>$ $\log t$ for all $t \geq e^{e}$, it suffices to have $z_{0} \geq e^{e}$. Using $z_{0} \log z_{0}=x$ we see that this is indeed the case when $x \geq 289$. It follows that (5) holds when $x \geq 289$. For $x<289$ we verify using Mathematica that

$$
1+\pi(n)-k<\frac{n}{\log p_{k+1}}\left(1-\frac{1}{2 \log p_{k+1}}\right)
$$

holds for all integers $9 \leq n<289$ and all $p_{k} \in[\sqrt{n}, n)$, where p_{k} is the k th prime. This implies that (5) holds for all $3 \leq x<289$ and $z \geq \sqrt{x}$. We have thus proved (5) in the range $3 \leq z \leq \sqrt{x}$, and hence (4) in the same range.

It remains to consider the range $y \leq z \leq \sqrt{x}$, where we necessarily have $x \geq 9$. We first prove (4) in this range. We assume that $x \geq 1,024$ so that $\sqrt{x} \geq 32$. For $1,024 \leq x<5,800$ we have $y \geq 16$ and $1 / \log z>0.230$. It follows by the inclusion-exclusion principle that

$$
\Phi(x, z)<x \prod_{p \leq 11}\left(1-\frac{1}{p}\right)+16<0.208 x+16<0.230 x<\frac{x}{\log z}
$$

for all $1,024 \leq x<5,800$. Suppose now that $x \geq 5,800$. Since $y^{3}>x$, any positive integer $n \leq x$ with all of its prime divisors greater than z must have at most 2 prime divisors. Hence

$$
\begin{equation*}
\Phi(x, z)=1+\pi(x)-\pi(z)+\sum_{z<p \leq \sqrt{x}} \sum_{p \leq q \leq x / p} 1 . \tag{7}
\end{equation*}
$$

We have by [13, Theorem 1] that

$$
\pi(x)<\frac{x}{\log x}+\frac{3 x}{2 \log ^{2} x}
$$

and

$$
\sum_{z<p \leq \sqrt{x}} \sum_{p \leq q \leq x / p} 1 \leq \sum_{z<p \leq \sqrt{x}} \pi\left(\frac{x}{p}\right) \leq \sum_{z<p \leq \sqrt{x}}\left(\frac{x / p}{\log (x / p)}+\frac{3 x / p}{2 \log ^{2}(x / p)}\right)
$$

Note that $1 /(1-t) \leq 1+2 t$ for all $t \in[0,1 / 2]$. Thus we have

$$
\begin{equation*}
\sum_{z<p \leq \sqrt{x}} \frac{x / p}{\log (x / p)} \leq \frac{x}{\log x} \sum_{z<p \leq \sqrt{x}} \frac{1}{p}+\frac{2 x}{\log ^{2} x} \sum_{z<p \leq \sqrt{x}} \frac{\log p}{p} \tag{8}
\end{equation*}
$$

From Theorem 5 and its corollary in [13] it follows that

$$
\sum_{z<p \leq \sqrt{x}} \frac{1}{p} \leq \log \frac{\log \sqrt{x}}{\log y}+\frac{1}{\log ^{2} \sqrt{x}}+\frac{1}{2 \log ^{2} y}=\log \frac{5}{4}+\frac{57}{8 \log ^{2} x}
$$

By Theorem 6 and its corollary in [13] we find that

$$
\sum_{z<p \leq \sqrt{x}} \frac{\log p}{p} \leq \log \sqrt{x}-\log y+\frac{1}{\log \sqrt{x}}+\frac{1}{2 \log y}=\frac{1}{10} \log x+\frac{13}{4 \log x}
$$

Inserting these estimates in (7) gives
$\Phi(x, z)<1+\frac{6 x}{5 \log x}+\frac{3 x}{2 \log ^{2} x}+\frac{13 x}{2 \log ^{3} x}+\left(\frac{x}{\log x}+\frac{6 x}{\log ^{2} x}\right)\left(\log \frac{5}{4}+\frac{57}{8 \log ^{2} x}\right)$.
Therefore, (4) will follow if we can show

$$
1+\frac{3 x}{2 \log ^{2} x}+\frac{13 x}{2 \log ^{3} x}+\left(\frac{x}{\log x}+\frac{6 x}{\log ^{2} x}\right)\left(\log \frac{5}{4}+\frac{57}{8 \log ^{2} x}\right) \leq \frac{4 x}{5 \log x}
$$

which is equivalent to

$$
\frac{\log x}{x}+\frac{3}{2 \log x}+\frac{13}{2 \log ^{2} x}+\left(1+\frac{6}{\log x}\right)\left(\log \frac{5}{4}+\frac{57}{8 \log ^{2} x}\right) \leq \frac{4}{5}
$$

Since the left side is a strictly decreasing function of $x \in[e, \infty)$, it is not hard to see by direct calculation that the inequality above holds for all $x \geq 5,800$. We have thus shown that (4) holds when $y \leq z \leq \sqrt{x}$ with $x \geq 1,024$. For $9 \leq x<1,024$, we confirm using Mathematica that (4) always holds in the range $y \leq z \leq \sqrt{x}$, finishing the proof of (4).

The proof of (6) is similar but slightly more complicated. We assume first that $x \geq 137,550$ so that $x^{2 / 5}>113.6$. Note that

$$
\begin{equation*}
\Phi(x, z)=1+\pi(x)+\pi(\sqrt{x})-2 \pi(z)+\sum_{z<p \leq \sqrt{x}} \sum_{p<q \leq x / p} 1 . \tag{9}
\end{equation*}
$$

By Theorem 1 and its corollaries in [13] we obtain

$$
\pi(x)+\pi(\sqrt{x})<\frac{x}{\log x}+\frac{3 x}{2 \log ^{2} x}+\frac{5 \sqrt{x}}{2 \log x}
$$

and

$$
\begin{aligned}
\sum_{z<p \leq \sqrt{x}} \sum_{p<q \leq x / p} 1 & =\sum_{z<p \leq \sqrt{x}}\left(\pi\left(\frac{x}{p}\right)-\pi(p)\right) \\
& \leq \sum_{z<p \leq \sqrt{x}}\left(\frac{x / p}{\log (x / p)}+\frac{3 x / p}{2 \log ^{2}(x / p)}-\frac{p}{\log p}\right) .
\end{aligned}
$$

From [13, Theorems 5,6] it follows that

$$
\begin{align*}
& \sum_{z<p \leq \sqrt{x}} \frac{1}{p} \leq \log \frac{\log \sqrt{x}}{\log z}+\frac{1}{2 \log ^{2} \sqrt{x}}+\frac{1}{2 \log ^{2} y}=\log \frac{\log \sqrt{x}}{\log z}+\frac{41}{8 \log ^{2} x} \tag{10}\\
& \sum_{z<p \leq \sqrt{x}} \frac{\log p}{p} \leq \log \frac{\sqrt{x}}{z}+\frac{1}{2 \log \sqrt{x}}+\frac{1}{2 \log y}=\log \frac{\sqrt{x}}{z}+\frac{9}{4 \log x} \tag{11}
\end{align*}
$$

Inserting these inequalities in (8) we obtain

$$
\sum_{z<p \leq \sqrt{x}} \frac{x / p}{\log (x / p)} \leq \frac{x}{\log x}\left(\log \frac{\log \sqrt{x}}{\log z}+\frac{41}{8 \log ^{2} x}\right)+\frac{2 x}{\log ^{2} x}\left(\log \frac{\sqrt{x}}{z}+\frac{9}{4 \log x}\right)
$$

For $z \in[y, \sqrt{x}]$, define

$$
u(x, z):=\sum_{z<p \leq \sqrt{x}}\left(\frac{3 x / p}{2 \log ^{2}(x / p)}-\frac{p}{\log p}\right)
$$

We claim that $u(x, z) \leq 0$ for all $z \in[y, \sqrt{x}]$. To prove this, let

$$
h(x, t):=3 x-\frac{2 t^{2}(\log x-\log t)^{2}}{\log t}
$$

for $t \in[y, \sqrt{x}]$. Then

$$
\frac{\partial}{\partial t} h(x, t)=-\frac{2 t((2 \log t-1)(\log x-\log t)-2 \log t)(\log x-\log t)}{\log ^{2} t}<0
$$

for all $t \in[y, \sqrt{x})$, since the inequalities $\log t>1$ and $\log x-\log t \geq \log \sqrt{x}>2$ imply that

$$
(2 \log t-1)(\log x-\log t)-2 \log t>(\log \sqrt{x}-2) \log t>0
$$

Hence as a function of $t, h(x, t)$ is strictly decreasing on $[y, \sqrt{x}]$. Note that

$$
\begin{aligned}
h(x, y) & =3 x^{4 / 5}\left(x^{1 / 5}-\frac{3}{5} \log x\right)>0, \\
h(x, \sqrt{x}) & =x(3-\log x)<0 .
\end{aligned}
$$

Thus there exists a unique $t_{0} \in(y, \sqrt{x})$ such that $h(x, t)>0$ for all $t \in\left[y, t_{0}\right)$ and $h(x, t)<0$ for all $t \in\left(t_{0}, \sqrt{x}\right]$. This implies that as a function of z,

$$
u(x, z)=\sum_{z<p \leq \sqrt{x}} \frac{h(x, p)}{2 p \log ^{2}(x / p)}
$$

is decreasing on $\left[y, t_{0}\right]$ and increasing on $\left[t_{0}, \sqrt{x}\right]$. It follows that

$$
u(x, z) \leq \max \{u(x, y), u(x, \sqrt{x})\}
$$

for all $z \in[y, \sqrt{x}]$. It is trivial that $u(x, \sqrt{x})=0$. Since $1 /(1-t)^{2} \leq 1+6 t$ for all $t \in[0,1 / 2]$, we have

$$
\sum_{y<p \leq \sqrt{x}} \frac{3 x / p}{2 \log ^{2}(x / p)} \leq \frac{3 x}{2 \log ^{2} x} \sum_{y<p \leq \sqrt{x}} \frac{1}{p}+\frac{9 x}{\log ^{3} x} \sum_{y<p \leq \sqrt{x}} \frac{\log p}{p} .
$$

Combining this with (10) and (11) gives

$$
\begin{equation*}
\sum_{y<p \leq \sqrt{x}} \frac{3 x / p}{2 \log ^{2}(x / p)} \leq\left(\frac{3}{2} \log \frac{5}{4}+\frac{9}{10}\right) \frac{x}{\log ^{2} x}+\frac{447 x}{16 \log ^{4} x} \tag{12}
\end{equation*}
$$

Applying partial summation and appealing to Theorem 1 and the affiliated Corollary 2 in [13], we have

$$
\begin{aligned}
\sum_{y<p \leq \sqrt{x}} \frac{p}{\log p} & =\frac{\sqrt{x}}{\log \sqrt{x}} \pi(\sqrt{x})-\frac{y}{\log y} \pi(y)-\int_{y}^{\sqrt{x}} \frac{\log t-1}{\log ^{2} t} \pi(t) d t \\
& >\frac{\sqrt{x}}{\log \sqrt{x}}\left(\frac{\sqrt{x}}{\log \sqrt{x}}+\frac{\sqrt{x}}{2 \log ^{2} \sqrt{x}}\right)-\frac{5 y^{2}}{4 \log ^{2} y}-\frac{5}{4} \int_{y}^{\sqrt{x}} \frac{t(\log t-1)}{\log ^{3} t} d t
\end{aligned}
$$

Integrating by parts we obtain

$$
\int_{y}^{\sqrt{x}} \frac{t(\log t-1)}{\log ^{3} t} d t=\int_{y}^{\sqrt{x}} \frac{t}{\log t} d\left(\frac{t}{\log t}\right)=\frac{1}{2}\left(\frac{x}{\log ^{2} \sqrt{x}}-\frac{y^{2}}{\log ^{2} y}\right)
$$

It follows that

$$
\sum_{y<p \leq \sqrt{x}} \frac{p}{\log p}>\frac{3 x}{2 \log ^{2} x}+\frac{4 x}{\log ^{3} x}-\frac{125 x^{4 / 5}}{32 \log ^{2} x}>\frac{1.45 x}{\log ^{2} x}
$$

since $0.05 \log x>0.59$ and

$$
\frac{0.05 x}{\log ^{2} x}+\frac{4 x}{\log ^{3} x}-\frac{125 x^{4 / 5}}{32 \log ^{2} x}>\left(4.59 x^{1 / 5}-\frac{125}{32} \log x\right) \frac{x^{4 / 5}}{\log ^{3} x}>0
$$

for all $x \geq 137,550$. Together with (12) this allows us to conclude that

$$
u(x, y)<\left(\frac{3}{2} \log \frac{5}{4}-1.45+\frac{9}{10}+\frac{447}{16 \log ^{2} x}\right) \frac{x}{\log ^{2} x}<0
$$

This proves our claim that $u(x, z) \leq 0$ for all $z \in[y, \sqrt{x}]$. Consequently, we obtain by collecting the estimates above and using (9) that

$$
\Phi(x, z)<1+\frac{x}{\log x}+\frac{3 x}{2 \log ^{2} x}+\frac{5 \sqrt{x}}{2 \log x}+\frac{x f(x)}{\log x}-g(x, z)
$$

where

$$
f(x):=\log \frac{5}{4}+\frac{41}{8 \log ^{2} x}+\frac{2}{\log x}\left(\frac{1}{10} \log x+\frac{9}{4 \log x}\right)=\log \frac{5}{4}+\frac{1}{5}+\frac{77}{8 \log ^{2} x}
$$

and

$$
g(x, z):=\frac{x}{\log x} \log \frac{\log z}{\log y}+\frac{2 x}{\log ^{2} x} \log \frac{z}{y} .
$$

Observe that

$$
\frac{\partial}{\partial z}\left(\frac{2 x}{3 \log z}+g(x, z)\right)=\frac{x}{3 z \log ^{2} z} Q\left(\frac{\log z}{\log x}\right)>0
$$

for $z \in[y, \sqrt{x}]$, where $Q(t):=6 t^{2}+3 t-2$. Thus we have

$$
\frac{2 x}{3 \log z}+g(x, z) \geq \frac{2 x}{3 \log y}=\frac{5 x}{3 \log x}
$$

Therefore, (6) will follow if we can show

$$
\frac{\log x}{x}+\frac{3}{2 \log x}+\frac{77}{8 \log ^{2} x}+\frac{5}{2 \sqrt{x}} \leq \frac{7}{15}-\log \frac{5}{4}
$$

This holds for all $x \geq 137,550$. Finally, we verify using Mathematica that

$$
1+\pi(n)+\pi(\sqrt{n})-2 k+\sum_{i=k+1}^{\pi(\sqrt{n})}\left(\pi\left(\frac{n}{p_{i}}\right)-i\right)<\frac{2 n}{3 \log p_{k+1}}
$$

holds for all integers $9 \leq n<137,550$ and all $p_{k} \in\left[n^{2 / 5}, \sqrt{n}\right]$. Hence (6) holds in the range $x^{2 / 5} \leq z \leq \sqrt{x}$.

This completes the proof of our theorem.
We remark that (4) is best possible in the sense that for any fixed $\epsilon>0$, it is not true that $\Phi(x, z)<(1-\epsilon) x / \log z$ holds uniformly in the entire range $1<z \leq x$. But when $2 \leq z \leq \sqrt{x}$, we expect that a somewhat stronger result holds, as we have seen when $y \leq z \leq \sqrt{x}$. It is possible to modify the proof to obtain (6) for
all $\max (2, \sqrt[3]{x}) \leq z \leq \sqrt{x}$. Applying this and the large sieve to the inequality $[14$, Equation (III.6.17)]

$$
\Phi(x, z) \leq \Phi(x, \sqrt[3]{x})+\sum_{z<p \leq \sqrt[3]{x}} \Phi\left(\frac{x}{p}, p\right)+\frac{x}{\lfloor z\rfloor}
$$

we may deduce that $\Phi(x, z)<0.8 x / \log z$ holds uniformly in the range $\max (2, \sqrt[4]{x}) \leq$ $z \leq \sqrt[3]{x}$. However, it is perhaps even true that the stronger inequality $\Phi(x, z)<$ $0.6 x / \log z$ holds uniformly in the range $2 \leq z \leq \sqrt{x}$, and a proof of this may require careful application of sieves in certain explicit forms. By examining the final part of the proof, we see that $\Phi(x, z)<C x / \log z$ holds in the range $y \leq z \leq \sqrt{x}$ when x is sufficiently large, where

$$
C>\frac{12}{25}+\frac{2}{5} \log \frac{5}{4}=0.56925 \ldots
$$

is fixed but arbitrary. Furthermore, if M denotes the maximum value of $\omega(u)$ for $u \geq 2$, then de Bruijn's result (2) implies that for any fixed $\epsilon>0$, we have

$$
(1 / 2-\epsilon) \frac{x}{\log z}<\Phi(x, z)<(M+\epsilon) \frac{x}{\log z}
$$

for all sufficiently large $z \leq \sqrt{x}$. It is easy to see that

$$
\omega(u)=\frac{\log (u-1)+1}{u}
$$

for all $u \in[2,3]$. According to Mathematica, we should expect $M=0.56713 \ldots$ attained by $\omega(u)$ at $u=2.76322 \ldots$ (which is the solution to the equation $(u-$ 1) $\log (u-1)=1)$. It is perhaps true that for every $\epsilon>0$, the inequality $\Phi(x, z)<$ $(M+\epsilon) x / \log z$ holds in the range $2 \leq z \leq \sqrt{x}$ for all sufficiently large x depending on the choice of ϵ only.

Acknowledgment. I would like to express my sincere gratitude to Prof. Carl Pomerance for communicating this interesting problem to me and providing several insightful comments and suggestions. I would also like to thank Prof. Kevin Ford for his feedback to an earlier draft of this paper.

References

[1] N. G. de Bruijn, On the number of uncancelled elements in the sieve of Eratosthenes, Nederl. Akad. Wetensch. Proc. 53 (1950), 803-812.
[2] N. G. de Bruijn, The asymptotic behaviour of a function occuring in the theory of primes, J. Indian Math. Soc. (N.S.) 15 (1951), 25-32.
[3] A. A. Buchstab, Asymptotic estimates of a general number-theoretic function (Russian, German summary), Mat. Sb. 44 (1937), 1239-1246.
[4] J. Friedlander and H. Iwaniec, Opera De Cribo, Amer. Math. Soc. Colloq. Publ., vol. 57, Amer. Math. Soc., Providence, RI., 2010.
[5] A. Granville and K. Soundararajan, The spectrum of multiplicative functions, Ann. of Math. (2) 153 (2001), 407-470.
[6] A. Granville and K. Soundararajan, The number of unsieved integers up to x, Acta Arith. 115 (2004), 305-328.
[7] H. Halberstam and H.-E. Richert, Sieve Methods, London Math. Soc. Monographs, vol. 4, Academic Press, London, 1974.
[8] R. R. Hall, Halving an estimate obtained from Selberg's upper bound method, Acta Arith. 25 (1974), 347-351.
[9] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 6th. ed., Oxford Univ. Press, Oxford, 2008. Revised by D. R. Heath-Brown and J. H. Silverman; With a forward by A. J. Wiles.
[10] A. Hildebrand, Quantitative mean value theorems for nonnegative multiplicative functions I, J. London Math. Soc. 30 (1985), 394-406.
[11] H. Maier, Primes in short intervals, Michigan Math. J. 32 (1985), 221-225.
[12] H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134.
[13] J. B. Rosser and L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64-94.
[14] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, 3rd. ed., Grad. Stud. Math., vol. 163, Amer. Math. Soc., Providence, RI., 2015.

