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Abstract
Let 1 < z < x be arbitrary real numbers, and denote by ®(z,z) the number of
positive integers up to x whose prime divisors are all greater than z. In this note
we prove the sharp inequality ®(x,z) < z/logz for all 1 < z < z, improving upon
the classical sieve bound ®(z, z) < z/log z.

1. The Result
One of the fundamental problems in sieve theory is the estimation of
S(A, P, z) = #{n € A: ged(n, P(z)) =1},

where A C N is a subset of positive integers, P is a subset of primes, z > 1 is a
positive real number, and
P(z) := H .

pEPN[1,z]

When A =NnN[1,z] and P is the set of all primes, where x > z is a real number,
the quantity S(A, P, z) yields the number of positive integers up to & whose prime
divisors are all greater than z. Throughout this paper we shall denote this quantity

by ®(z, z), namely,
O(x,2) = Z 1.

n<z
pln=p>z
By the inclusion-exclusion principle we have the explicit formula

o@,2) = Y uld) | 3]

d|P(z)

where |a] denotes the integer part of a for any a € R and p is the Mébius function.
This is the starting point of the sieve of Eratosthenes. When z is fairly small in
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comparison with z but tending to infinity, say z = z°(!), it is easy to see, by the
fundamental lemma of either Brun’s sieve [7, Theorem 2.5] or Selberg’s sieve [7,
Theorem 7.2], together with a classical theorem of Mertens [9, Theorem 429], that

o(w,2) ~ ] <1 _ ;) ~ T;: (1)

p<z

where v = 0.57721... is Euler’s constant.

Around 70 years ago, Buchstab and de Bruijn studied the distribution of un-
cancelled elements in the sieve of Eratostenes. Setting u := logz/logz so that
z = /%, Buchstab [3] showed that for any fixed u > 1,

1 w(u)z
) ~ ze" T A GO
(z,2) ~ zew(u) H ( p) Tog 2
p<z
as © — 0o, where w: [1,00) — (0,00) is the Buchstab function which is defined as
the unique continuous solution to the delay differential equation
d
%(uw(u)) =wu—1), u>2,
subject to the initial condition w(u) = 1/u for 1 < u < 2. Tt is convenient to extend
the definition of w(u) by setting w(u) := 0 for u < 1. Comparing this result with
(1) we see that the asymptotic behavior of ®(z, z) is somewhat irregular. Maier [11]
gave an interesting application of Buchstab’s result to the distribution of primes in
short intervals. Using the fact that w(u) — e™7 changes sign in every interval of
length one, he showed that for any given A > 1 one has

m(z + (log z)*)

li 1

1£sip (log x)/\_l > 1,
A

lim inf T+ 10801

T—00 (log 1‘)’\_1

where 7 (z) is the prime counting function. Building on Buchstab’s work, de Bruijn
[1] showed, among other things, that w(u) — e~ as u — oo and that

O(x,2) = p.(u)ezlog z H (1 — ;) + O(x exp(—(log 2)3/5_6)) (2)

p<z

for x > z > 2, where € > 0 is any given real number and

e (u) == /000 w(u—v)z7" dv.

In fact, w(u) converges to e~7 quite rapidly, as one can see from the graph of w(u)
below generated by Mathematica.



INTEGERS: 22 (2022) 3

w(u)
1.0 ——

c

09|
08!
A

06!

05"

Indeed, Buchstab [3] showed that

plu—1)

w(u) —e 7 <
() = 7] < 2

for all u > 1, where p(u) is the Dickman-de Bruijn function which is defined to be
the unique continuous solution to the delay differential equation

up' (u) +plu—1)=0, u>1,

with the initial condition p(u) = 1 for 0 < u < 1. Combined with an estimate of de
Bruijn on p(u) [2, Equ (1.8)] this shows that |w(u) — e~ 7] is

loglogu — 1 log 2
< exp <—u (logu—f—loglogu— 14 ogoeu T 2 +0 ((ogogu) >>> .
logu logu

Finer results on the asymptotic behavior of ®(x, z) have been found by Tenenbaum.
The reader is referred to his book [14, Chapter II1.6] for detailed discussions on this
subject.

In the present note we are interested in upper bounds for ®(z,z) that are ap-
plicable in wide ranges. For instance, a theorem of Hall on the distribution of the
mean values of multiplicative functions [8] allows us to obtain upper bounds when
z and zx are sufficiently large. To state his result, let f denote a multiplicative
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function such that 0 < f(n) <1 for all n € N, and define

= T(5) (559

k=0

Hall [8] showed that

s X s e (1vo(MEE) Jeur Y

n<z

This result was later improved by Hildebrand [10], and Granville and Soundararajan
[5, 6] have developed a method that connects the mean values of complex multiplica-
tive functions taking values in the closed unit disk with the continuous solutions to
certain integral equations. Taking f to be the characteristic function of the set of
n € N with ged(n, P(z)) = 1, we obtain at once from (3) that for any fixed € > 0,

O(z,2) < ez (1 +0 <log10gx>) H (1 - 1) <(l+¢) °
log x s P log z

for sufficiently large z. The object of this note is to establish the following theorem
which shows that the above inequality, with the term e discarded, holds uniformly
foralll <z <uz.

Theorem. For any 1 < z < x we have

O(x,2) < gz’ (4)
Moreover, we have -
(z,7) < logz 2log®z ©)
when z > max(3,/x) and )
x
D(x,2) < Slogz (6)
when max(2,2%/%) < z < /.
Proof. The case 1 < z < 2 is trivial, since
x x
br) <z < log 2 < logz
For 2 < z < 3 we have
B(z,2) < z+1 T T

7 < log 3 < log 2
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This proves (4) for 1 < z < 3. To prove (6) for 2 < z < 3, note that z > 4 and that

z+1 2x 2x
®(x,2) < < <
(z,2) < 2 3logd 3logz

when = > 5. Moreover,

2x 2z
[ < —_—
3log3 3logz

when 4 < 2 < 5. Hence (6) holds for 2 < z < 3.
From now on we shall suppose that z > 3. Put y := z
large sieve [4, Corollary 9.9] we have

Oz, 2)=2<

2/5 By the arithmetic

x+22

or,2) < g

where

S(z) = Z: 'l;((nn))

and ¢ is Euler’s totient function. Montgomery and Vaughan [12, Lemma 7] showed
that S(z) > logz + 1.07 for all z > 6. Combining this with the precise values of
S(z) for 3 < z < 6, we find that S(z) > log z + 0.89 for all z > 3. Thus we have

x + 22 T
< <
~ logz+0.89 " logz

O(x, z)

whenever z2logz < 0.89z, which is easily seen to be true when 3 < z < y. This
proves (4) in the range 3 < z < y.

Now we treat the case z > y/z. By Theorem 1 and the associated Corollary 1 in
[13] we have

T 3z z

) -1 - 1 -
(x,2) +7(z)—m(z) <1+ og 7 + S0z logz

whenever x > 289. We compute

8<x+z_ x >_(zlogz—x)(logz—1)
9z \logz  2log?z) zlog® 2

This implies that as z € [3, z] varies, the quantity

T+ z x
logz  2log? 2

is minimized at z = zg, where 2 € [3, z] satisfies the equation zglog zo = . Hence

T+ z T 20 zo log 2o

> 2o+ >z0+ ———"——.
logz  2log?z ~ © 2logz " 2log?(zlog z)
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Now (5) will follow if we can show

zo log 2o 3z log zg <ot zp log 2o
log(zologzo) ~ 2log*(z0log z0) ~ 21og?(zo log z9)

Simple computation shows that this is equivalent to

log2 (20 log zp)
20

(loglog zy — 1) log zg + log? log zy — >0,

which clearly holds if loglog zo > 1 and (y/zo — 1) log log 29 > log zo. Since v/t —1 >
logt for all ¢t > e, it suffices to have zy > e®. Using 2 log zp = = we see that this is
indeed the case when x > 289. It follows that (5) holds when z > 289. For < 289
we verify using Mathematica that

n 1
14+7(n)—k< (1 - )
) log pr+1 210g pr1

holds for all integers 9 < n < 289 and all py, € [/n,n), where py is the kth prime.
This implies that (5) holds for all 3 < z < 289 and z > /z. We have thus proved
(5) in the range 3 < z < y/x, and hence (4) in the same range.

It remains to consider the range y < z < v/, where we necessarily have z > 9.
We first prove (4) in this range. We assume that x > 1,024 so that /z > 32.
For 1,024 < z < 5,800 we have y > 16 and 1/logz > 0.230. It follows by the
inclusion-exclusion principle that

T

1
®(z,2) <z [[ <1 - p) +16 < 0.208z + 16 < 0.230z <

log
p<11 &

for all 1,024 < x < 5,800. Suppose now that x > 5,800. Since y* > x, any positive
integer n < z with all of its prime divisors greater than z must have at most 2
prime divisors. Hence

O(z,2) =14 m(x) —7(z) + Z Z 1. (7)
z<p<Vz p<q<z/p
We have by [13, Theorem 1] that

x 3x

m(r) < +
() log x 210g2ac

and

D S W(x>< 2 <logx(gp)+210?{§/p)>'

p
z<p<y/zp<q<z/p 2<p<Vx 2<p<Vz
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Note that 1/(1 —¢) <14 2¢ for all ¢ € [0,1/2]. Thus we have

x/p x 1 2x logp
2 log(z/p) ~ loge 2 T s p ®)

z2<p<Vx Z<pS\/5p log m2<p§x/§

From Theorem 5 and its corollary in [13] it follows that

0 + + = log — + .
D glogy log? z = 2log*y ! 8log?

1 1 1 1
Z 1 og /T ) 5 57
2<p<y/z

By Theorem 6 and its corollary in [13] we find that

I 1 1 1 13
Z ngSlogf—logy—i-i—i—i:—logx—i—i.
logy/x  2logy 10 4logx

2<p<VT

Inserting these estimates in (7) gives

6z 3z 13z T 6x ) o7
O(r,2) <1+ + 5— + T + +— log — + 5 | -
Slogz  2log®z  2log”x logz ~ log®x 4 8log“x

Therefore, (4) will follow if we can show

|+ 3x N 13z +<x N 633)(10 §+ 57 >< dx
2log?z  2log’x logz  log? 1 8log”z/ ~ blogx’

which is equivalent to

log x 3 13 6 b) 57 4
+ b (14— ) (log >+ ——) <=
x 2logz  2log® x log x 4 8log“x 5

Since the left side is a strictly decreasing function of x € [e, ), it is not hard to
see by direct calculation that the inequality above holds for all > 5,800. We have
thus shown that (4) holds when y < z < /z with > 1,024. For 9 < z < 1,024,
we confirm using Mathematica that (4) always holds in the range y < 2z < /z,
finishing the proof of (4).

The proof of (6) is similar but slightly more complicated. We assume first that
x > 137,550 so that 2%/° > 113.6. Note that

O(x,2) =1+m(x) +7(vVz)—2n(z)+ > > L 9)

z2<p<+/z p<q<z/p

By Theorem 1 and its corollaries in [13] we obtain

x 3z 5/

<
log x + 2log” x + 2logx

m(x) + 7(v)
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and

XY = X (x(5)-w)

z2<p<+/z p<q<z/p 2<p<\Vz

S2:(@/1)+ 3z /p p).

s log(z/p) ~ 2log®(z/p) logp

From [13, Theorems 5,6] it follows that

1 1 1 1 1 41
E - <log ?gﬁ+2l 5 +21 5— = log (;g\/f+ v (10)
ez ? og z og” /T og”y 0g z 8log” x
1 1 1 9
E ﬂglogﬁ—&— + zlog@—i- . (11)
z 2log/z  2logy z 4logx
2<p<VET

Inserting these inequalities in (8) we obtain
1 41 2 9
Z lol&g} )Sloxx (10g (f)\/zi—i_égl 2 )+1 32: <10g\£5+410 x)
r<pe/E g\r/p g g og~x og- x g
For z € [y, /x|, define

a(w,z) = 3 < 32/p P )

! _
oz s \2log7(x/p)  logp

We claim that u(z,z) < 0 for all z € [y, +/z]. To prove this, let

B 2t2(logz — log t)?

h(z,t) =
(z,8) := 32 logt
for ¢ € [y, +/z]. Then
gh(m,t) _ ~2t((2logt —1)(logz — log2t) —2logt)(logz — logt) <0
ot log“ t

for all t € [y, /), since the inequalities logt > 1 and logz — logt > log\/z > 2
imply that

(2logt — 1)(logx — logt) — 2logt > (log vz — 2)logt > 0.

Hence as a function of ¢, h(z,t) is strictly decreasing on [y, /z]. Note that

h(z,y) = 3z*/° <x1/5 - glogm) > 0,

h(z,/x) = 2(3 —logz) < 0.
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Thus there exists a unique ty € (y, /) such that h(x,t) > 0 for all ¢ € [y, ty) and
h(z,t) < 0 for all ¢t € (to,+/z]. This implies that as a function of z,

u(zx,z) = __h@p)
9= 2 Sl

is decreasing on [y, to] and increasing on [tg, \/x]. It follows that

u(z, 2) < max{u(z,y),u(r, Vr)}

for all z € [y,+/x]. Tt is trivial that u(x,/z) = 0. Since 1/(1 —¢)? < 1 + 6t for all
t € [0,1/2], we have

3z/p 1 9z log p
Z 210g2(x/p) Z<: D Z p

y<p<Vz 210g v log v y<p<Vz

Combining this with (10) and (11) gives

44
Z 21032(5/ ) = (31 g5 * 190) 101‘23: - 16107?133. (12)
y<p<\/3 g p g g

Applying partial summation and appealing to Theorem 1 and the affiliated Corollary
2 in [13], we have

VT
D NG Y logt —1
§ logp  Io ﬁﬂ(ﬁ) " log m(y) —/ ﬁﬂ(t) dt
y<p<vz & 4 Y 08

o Ve (\/;E LV > 5y _5/ﬁt(1ogt—1)dt
log /z \ log\/x 210g2\/5 y log® ¢ '

a 4log’y 4
Integrating by parts we obtain

/ﬂt(logt—ndt:/ﬁ t d( t >:1< I )
y log® ¢ y logt \logt 2 \log® vz log?y

It follows that

Z P 3z Az 125245 145z

logp ” 21og® x * log® a 32log® ” log® z’
y<p<yz

since 0.051logz > 0.59 and

0.05 4 12524/5
ey (4.59x1/5 -
logx log”z 32log”x
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for all > 137,550. Together with (12) this allows us to conclude that

<0.

3 5 9 447
u(a:,y)<(2log4—1.45++ ) a

10~ 16logz /) log®x

This proves our claim that u(zx, z) <0 for all z € [y, \/z]. Consequently, we obtain
by collecting the estimates above and using (9) that

3z N 5vx +xf(x)

T
P 1 —
(z,2) <1+ log z * 2log’z  2logz  logz 9(x,2),
where
5 41 2 1 9 5 1 7
— log 2 ) SN S PO
/(@) Og4+810g2x+logx (10 ng+4log:17> %115 8log” x

and
T log =z 2z

z
= (e} + 10 —.
log x & logy  log’x & Y

0 2z T log z
0z (310g2+g(x7z)> 3zlog2zQ(logx)

for z € [y, /x], where Q(t) := 6t> + 3t — 2. Thus we have

g(z,2) :

Observe that

2z 2x %4
+g(w,2) >

3log z 3logy:31oga:'

Therefore, (6) will follow if we can show

log x 3 n 7 n 5 <l—lo§
x| 2logz | 8loglz  2yz — 15 o4

This holds for all x > 137,550. Finally, we verify using Mathematica that

1+7(n) +7(Vn) — 2k + ﬂg) <7T (") - Z> ;

< —
Ml Di 3log pk+1

holds for all integers 9 < n < 137,550 and all py € [n%/®,\/n]. Hence (6) holds in
the range 2%/° < z < |/z.
This completes the proof of our theorem. O

We remark that (4) is best possible in the sense that for any fixed € > 0, it is not
true that ®(x, z) < (1 — €)z/log z holds uniformly in the entire range 1 < z < .
But when 2 < 2 < /x, we expect that a somewhat stronger result holds, as we
have seen when y < z < /z. It is possible to modify the proof to obtain (6) for
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all max(2, ¥/z) < z < \/z. Applying this and the large sieve to the inequality [14,
Equation (II1.6.17)]

O(z,2) < D, V) + Y @ (z,p) LT

z<p< Yz

we may deduce that ®(x, z) < 0.82/log z holds uniformly in the range max (2, /z) <
z < ¥/z. However, it is perhaps even true that the stronger inequality ®(z,z) <
0.6z/ log z holds uniformly in the range 2 < z < y/x, and a proof of this may require
careful application of sieves in certain explicit forms. By examining the final part
of the proof, we see that ®(z, z) < Cz/log z holds in the range y < z < /= when
x is sufficiently large, where
12 2 5
C>—+ -log- =0.56925...

Z 95 5987
is fixed but arbitrary. Furthermore, if M denotes the maximum value of w(u) for
u > 2, then de Bruijn’s result (2) implies that for any fixed ¢ > 0, we have

X
(/2= ) < @,2) < (M + )3

for all sufficiently large z < /x. It is easy to see that

_log(u—1)+1
B u

w(u)

for all u € [2,3]. According to Mathematica, we should expect M = 0.56713...
attained by w(u) at v = 2.76322... (which is the solution to the equation (u —
1) log(u — 1) = 1). It is perhaps true that for every € > 0, the inequality ®(z,2) <
(M + €)z/log z holds in the range 2 < z < /z for all sufficiently large x depending
on the choice of € only.
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