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Abstract

Let 1 < z ≤ x be arbitrary real numbers, and denote by Φ(x, z) the number of
positive integers up to x whose prime divisors are all greater than z. In this note
we prove the sharp inequality Φ(x, z) < x/ log z for all 1 < z ≤ x, improving upon
the classical sieve bound Φ(x, z)� x/ log z.

1. The Result

One of the fundamental problems in sieve theory is the estimation of

S(A,P, z) = #{n ∈ A : gcd(n, P (z)) = 1},

where A ⊆ N is a subset of positive integers, P is a subset of primes, z > 1 is a

positive real number, and

P (z) :=
∏

p∈P∩[1,z]

p.

When A = N ∩ [1, x] and P is the set of all primes, where x ≥ z is a real number,

the quantity S(A,P, z) yields the number of positive integers up to x whose prime

divisors are all greater than z. Throughout this paper we shall denote this quantity

by Φ(x, z), namely,

Φ(x, z) =
∑
n≤x

p|n⇒p>z

1.

By the inclusion-exclusion principle we have the explicit formula

Φ(x, z) =
∑
d|P (z)

µ(d)
⌊x
d

⌋
,

where bac denotes the integer part of a for any a ∈ R and µ is the Möbius function.

This is the starting point of the sieve of Eratosthenes. When z is fairly small in
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comparison with x but tending to infinity, say z = xo(1), it is easy to see, by the

fundamental lemma of either Brun’s sieve [7, Theorem 2.5] or Selberg’s sieve [7,

Theorem 7.2], together with a classical theorem of Mertens [9, Theorem 429], that

Φ(x, z) ∼ x
∏
p≤z

(
1− 1

p

)
∼ e−γx

log z
, (1)

where γ = 0.57721... is Euler’s constant.

Around 70 years ago, Buchstab and de Bruijn studied the distribution of un-

cancelled elements in the sieve of Eratostenes. Setting u := log x/ log z so that

z = x1/u, Buchstab [3] showed that for any fixed u > 1,

Φ(x, z) ∼ xeγω(u)
∏
p≤z

(
1− 1

p

)
∼ ω(u)x

log z

as x → ∞, where ω : [1,∞) → (0,∞) is the Buchstab function which is defined as

the unique continuous solution to the delay differential equation

d

du
(uω(u)) = ω(u− 1), u ≥ 2,

subject to the initial condition ω(u) = 1/u for 1 ≤ u ≤ 2. It is convenient to extend

the definition of ω(u) by setting ω(u) := 0 for u < 1. Comparing this result with

(1) we see that the asymptotic behavior of Φ(x, z) is somewhat irregular. Maier [11]

gave an interesting application of Buchstab’s result to the distribution of primes in

short intervals. Using the fact that ω(u) − e−γ changes sign in every interval of

length one, he showed that for any given λ > 1 one has

lim sup
x→∞

π(x+ (log x)λ)

(log x)λ−1
> 1,

lim inf
x→∞

π(x+ (log x)λ)

(log x)λ−1
< 1,

where π(x) is the prime counting function. Building on Buchstab’s work, de Bruijn

[1] showed, among other things, that ω(u)→ e−γ as u→∞ and that

Φ(x, z) = µz(u)eγx log z
∏
p≤z

(
1− 1

p

)
+O(x exp(−(log z)3/5−ε)) (2)

for x ≥ z ≥ 2, where ε > 0 is any given real number and

µz(u) :=

∫ ∞
0

ω(u− v)z−v dv.

In fact, ω(u) converges to e−γ quite rapidly, as one can see from the graph of ω(u)

below generated by Mathematica.
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Indeed, Buchstab [3] showed that

|ω(u)− e−γ | ≤ ρ(u− 1)

u

for all u ≥ 1, where ρ(u) is the Dickman-de Bruijn function which is defined to be

the unique continuous solution to the delay differential equation

uρ′(u) + ρ(u− 1) = 0, u > 1,

with the initial condition ρ(u) = 1 for 0 < u ≤ 1. Combined with an estimate of de

Bruijn on ρ(u) [2, Equ (1.8)] this shows that |ω(u)− e−γ | is

≤ exp

(
−u

(
log u+ log log u− 1 +

log log u− 1

log u
+O

((
log log u

log u

)2
)))

.

Finer results on the asymptotic behavior of Φ(x, z) have been found by Tenenbaum.

The reader is referred to his book [14, Chapter III.6] for detailed discussions on this

subject.

In the present note we are interested in upper bounds for Φ(x, z) that are ap-

plicable in wide ranges. For instance, a theorem of Hall on the distribution of the

mean values of multiplicative functions [8] allows us to obtain upper bounds when

z and x are sufficiently large. To state his result, let f denote a multiplicative
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function such that 0 ≤ f(n) ≤ 1 for all n ∈ N, and define

Θ(f, x) :=
∏
p≤x

(
1− 1

p

)( ∞∑
k=0

f(pk)

pk

)
.

Hall [8] showed that

1

x

∑
n≤x

f(n) ≤ eγ
(

1 +O

(
log log x

log x

))
Θ(f, x). (3)

This result was later improved by Hildebrand [10], and Granville and Soundararajan

[5, 6] have developed a method that connects the mean values of complex multiplica-

tive functions taking values in the closed unit disk with the continuous solutions to

certain integral equations. Taking f to be the characteristic function of the set of

n ∈ N with gcd(n, P (z)) = 1, we obtain at once from (3) that for any fixed ε > 0,

Φ(x, z) ≤ eγx
(

1 +O

(
log log x

log x

))∏
p≤z

(
1− 1

p

)
< (1 + ε)

x

log z

for sufficiently large z. The object of this note is to establish the following theorem

which shows that the above inequality, with the term ε discarded, holds uniformly

for all 1 < z ≤ x.

Theorem. For any 1 < z ≤ x we have

Φ(x, z) <
x

log z
. (4)

Moreover, we have

Φ(x, z) <
x

log z
− x

2 log2 z
(5)

when z ≥ max(3,
√
x) and

Φ(x, z) <
2x

3 log z
(6)

when max(2, x2/5) ≤ z ≤
√
x.

Proof. The case 1 < z < 2 is trivial, since

Φ(x) ≤ x < x

log 2
<

x

log z
.

For 2 ≤ z < 3 we have

Φ(x, z) ≤ x+ 1

2
<

x

log 3
<

x

log z
.
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This proves (4) for 1 < z < 3. To prove (6) for 2 ≤ z < 3, note that x ≥ 4 and that

Φ(x, z) ≤ x+ 1

2
<

2x

3 log 3
<

2x

3 log z

when x ≥ 5. Moreover,

Φ(x, z) = 2 <
2x

3 log 3
<

2x

3 log z

when 4 ≤ x < 5. Hence (6) holds for 2 ≤ z < 3.

From now on we shall suppose that z ≥ 3. Put y := x2/5. By the arithmetic

large sieve [4, Corollary 9.9] we have

Φ(x, z) ≤ x+ z2

S(z)
,

where

S(z) :=
∑
n≤z

µ(n)2

ϕ(n)

and ϕ is Euler’s totient function. Montgomery and Vaughan [12, Lemma 7] showed

that S(z) ≥ log z + 1.07 for all z ≥ 6. Combining this with the precise values of

S(z) for 3 ≤ z < 6, we find that S(z) ≥ log z + 0.89 for all z ≥ 3. Thus we have

Φ(x, z) ≤ x+ z2

log z + 0.89
<

x

log z

whenever z2 log z < 0.89x, which is easily seen to be true when 3 ≤ z ≤ y. This

proves (4) in the range 3 ≤ z ≤ y.

Now we treat the case z ≥
√
x. By Theorem 1 and the associated Corollary 1 in

[13] we have

Φ(x, z) = 1 + π(x)− π(z) < 1 +
x

log x
+

3x

2 log2 x
− z

log z

whenever x ≥ 289. We compute

∂

∂z

(
x+ z

log z
− x

2 log2 z

)
=

(z log z − x)(log z − 1)

z log3 z
.

This implies that as z ∈ [3, x] varies, the quantity

x+ z

log z
− x

2 log2 z

is minimized at z = z0, where z0 ∈ [3, x] satisfies the equation z0 log z0 = x. Hence

x+ z

log z
− x

2 log2 z
≥ z0 +

z0
2 log z0

> z0 +
z0 log z0

2 log2(z0 log z0)
.
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Now (5) will follow if we can show

1 +
z0 log z0

log(z0 log z0)
+

3z0 log z0

2 log2(z0 log z0)
≤ z0 +

z0 log z0

2 log2(z0 log z0)
.

Simple computation shows that this is equivalent to

(log log z0 − 1) log z0 + log2 log z0 −
log2(z0 log z0)

z0
≥ 0,

which clearly holds if log log z0 ≥ 1 and (
√
z0−1) log log z0 ≥ log z0. Since

√
t−1 >

log t for all t ≥ ee, it suffices to have z0 ≥ ee. Using z0 log z0 = x we see that this is

indeed the case when x ≥ 289. It follows that (5) holds when x ≥ 289. For x < 289

we verify using Mathematica that

1 + π(n)− k < n

log pk+1

(
1− 1

2 log pk+1

)
holds for all integers 9 ≤ n < 289 and all pk ∈ [

√
n, n), where pk is the kth prime.

This implies that (5) holds for all 3 ≤ x < 289 and z ≥
√
x. We have thus proved

(5) in the range 3 ≤ z ≤
√
x, and hence (4) in the same range.

It remains to consider the range y ≤ z ≤
√
x, where we necessarily have x ≥ 9.

We first prove (4) in this range. We assume that x ≥ 1,024 so that
√
x ≥ 32.

For 1,024 ≤ x < 5,800 we have y ≥ 16 and 1/ log z > 0.230. It follows by the

inclusion-exclusion principle that

Φ(x, z) < x
∏
p≤11

(
1− 1

p

)
+ 16 < 0.208x+ 16 < 0.230x <

x

log z

for all 1,024 ≤ x < 5,800. Suppose now that x ≥ 5,800. Since y3 > x, any positive

integer n ≤ x with all of its prime divisors greater than z must have at most 2

prime divisors. Hence

Φ(x, z) = 1 + π(x)− π(z) +
∑

z<p≤
√
x

∑
p≤q≤x/p

1. (7)

We have by [13, Theorem 1] that

π(x) <
x

log x
+

3x

2 log2 x

and ∑
z<p≤

√
x

∑
p≤q≤x/p

1 ≤
∑

z<p≤
√
x

π

(
x

p

)
≤

∑
z<p≤

√
x

(
x/p

log(x/p)
+

3x/p

2 log2(x/p)

)
.
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Note that 1/(1− t) ≤ 1 + 2t for all t ∈ [0, 1/2]. Thus we have∑
z<p≤

√
x

x/p

log(x/p)
≤ x

log x

∑
z<p≤

√
x

1

p
+

2x

log2 x

∑
z<p≤

√
x

log p

p
. (8)

From Theorem 5 and its corollary in [13] it follows that

∑
z<p≤

√
x

1

p
≤ log

log
√
x

log y
+

1

log2√x
+

1

2 log2 y
= log

5

4
+

57

8 log2 x
.

By Theorem 6 and its corollary in [13] we find that∑
z<p≤

√
x

log p

p
≤ log

√
x− log y +

1

log
√
x

+
1

2 log y
=

1

10
log x+

13

4 log x
.

Inserting these estimates in (7) gives

Φ(x, z) < 1 +
6x

5 log x
+

3x

2 log2 x
+

13x

2 log3 x
+

(
x

log x
+

6x

log2 x

)(
log

5

4
+

57

8 log2 x

)
.

Therefore, (4) will follow if we can show

1 +
3x

2 log2 x
+

13x

2 log3 x
+

(
x

log x
+

6x

log2 x

)(
log

5

4
+

57

8 log2 x

)
≤ 4x

5 log x
,

which is equivalent to

log x

x
+

3

2 log x
+

13

2 log2 x
+

(
1 +

6

log x

)(
log

5

4
+

57

8 log2 x

)
≤ 4

5
.

Since the left side is a strictly decreasing function of x ∈ [e,∞), it is not hard to

see by direct calculation that the inequality above holds for all x ≥ 5,800. We have

thus shown that (4) holds when y ≤ z ≤
√
x with x ≥ 1,024. For 9 ≤ x < 1,024,

we confirm using Mathematica that (4) always holds in the range y ≤ z ≤
√
x,

finishing the proof of (4).

The proof of (6) is similar but slightly more complicated. We assume first that

x ≥ 137,550 so that x2/5 > 113.6. Note that

Φ(x, z) = 1 + π(x) + π(
√
x)− 2π(z) +

∑
z<p≤

√
x

∑
p<q≤x/p

1. (9)

By Theorem 1 and its corollaries in [13] we obtain

π(x) + π(
√
x) <

x

log x
+

3x

2 log2 x
+

5
√
x

2 log x
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and ∑
z<p≤

√
x

∑
p<q≤x/p

1 =
∑

z<p≤
√
x

(
π

(
x

p

)
− π(p)

)

≤
∑

z<p≤
√
x

(
x/p

log(x/p)
+

3x/p

2 log2(x/p)
− p

log p

)
.

From [13, Theorems 5,6] it follows that∑
z<p≤

√
x

1

p
≤ log

log
√
x

log z
+

1

2 log2√x
+

1

2 log2 y
= log

log
√
x

log z
+

41

8 log2 x
, (10)

∑
z<p≤

√
x

log p

p
≤ log

√
x

z
+

1

2 log
√
x

+
1

2 log y
= log

√
x

z
+

9

4 log x
. (11)

Inserting these inequalities in (8) we obtain∑
z<p≤

√
x

x/p

log(x/p)
≤ x

log x

(
log

log
√
x

log z
+

41

8 log2 x

)
+

2x

log2 x

(
log

√
x

z
+

9

4 log x

)
.

For z ∈ [y,
√
x], define

u(x, z) :=
∑

z<p≤
√
x

(
3x/p

2 log2(x/p)
− p

log p

)
.

We claim that u(x, z) ≤ 0 for all z ∈ [y,
√
x]. To prove this, let

h(x, t) := 3x− 2t2(log x− log t)2

log t

for t ∈ [y,
√
x]. Then

∂

∂t
h(x, t) = −2t((2 log t− 1)(log x− log t)− 2 log t)(log x− log t)

log2 t
< 0

for all t ∈ [y,
√
x), since the inequalities log t > 1 and log x − log t ≥ log

√
x > 2

imply that

(2 log t− 1)(log x− log t)− 2 log t > (log
√
x− 2) log t > 0.

Hence as a function of t, h(x, t) is strictly decreasing on [y,
√
x]. Note that

h(x, y) = 3x4/5
(
x1/5 − 3

5
log x

)
> 0,

h(x,
√
x) = x(3− log x) < 0.
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Thus there exists a unique t0 ∈ (y,
√
x) such that h(x, t) > 0 for all t ∈ [y, t0) and

h(x, t) < 0 for all t ∈ (t0,
√
x]. This implies that as a function of z,

u(x, z) =
∑

z<p≤
√
x

h(x, p)

2p log2(x/p)

is decreasing on [y, t0] and increasing on [t0,
√
x]. It follows that

u(x, z) ≤ max{u(x, y), u(x,
√
x)}

for all z ∈ [y,
√
x]. It is trivial that u(x,

√
x) = 0. Since 1/(1 − t)2 ≤ 1 + 6t for all

t ∈ [0, 1/2], we have∑
y<p≤

√
x

3x/p

2 log2(x/p)
≤ 3x

2 log2 x

∑
y<p≤

√
x

1

p
+

9x

log3 x

∑
y<p≤

√
x

log p

p
.

Combining this with (10) and (11) gives∑
y<p≤

√
x

3x/p

2 log2(x/p)
≤
(

3

2
log

5

4
+

9

10

)
x

log2 x
+

447x

16 log4 x
. (12)

Applying partial summation and appealing to Theorem 1 and the affiliated Corollary

2 in [13], we have

∑
y<p≤

√
x

p

log p
=

√
x

log
√
x
π(
√
x)− y

log y
π(y)−

∫ √x
y

log t− 1

log2 t
π(t) dt

>

√
x

log
√
x

( √
x

log
√
x

+

√
x

2 log2√x

)
− 5y2

4 log2 y
− 5

4

∫ √x
y

t(log t− 1)

log3 t
dt.

Integrating by parts we obtain∫ √x
y

t(log t− 1)

log3 t
dt =

∫ √x
y

t

log t
d

(
t

log t

)
=

1

2

(
x

log2√x
− y2

log2 y

)
.

It follows that ∑
y<p≤

√
x

p

log p
>

3x

2 log2 x
+

4x

log3 x
− 125x4/5

32 log2 x
>

1.45x

log2 x
,

since 0.05 log x > 0.59 and

0.05x

log2 x
+

4x

log3 x
− 125x4/5

32 log2 x
>

(
4.59x1/5 − 125

32
log x

)
x4/5

log3 x
> 0
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for all x ≥ 137,550. Together with (12) this allows us to conclude that

u(x, y) <

(
3

2
log

5

4
− 1.45 +

9

10
+

447

16 log2 x

)
x

log2 x
< 0.

This proves our claim that u(x, z) ≤ 0 for all z ∈ [y,
√
x]. Consequently, we obtain

by collecting the estimates above and using (9) that

Φ(x, z) < 1 +
x

log x
+

3x

2 log2 x
+

5
√
x

2 log x
+
xf(x)

log x
− g(x, z),

where

f(x) := log
5

4
+

41

8 log2 x
+

2

log x

(
1

10
log x+

9

4 log x

)
= log

5

4
+

1

5
+

77

8 log2 x

and

g(x, z) :=
x

log x
log

log z

log y
+

2x

log2 x
log

z

y
.

Observe that

∂

∂z

(
2x

3 log z
+ g(x, z)

)
=

x

3z log2 z
Q

(
log z

log x

)
> 0

for z ∈ [y,
√
x], where Q(t) := 6t2 + 3t− 2. Thus we have

2x

3 log z
+ g(x, z) ≥ 2x

3 log y
=

5x

3 log x
.

Therefore, (6) will follow if we can show

log x

x
+

3

2 log x
+

77

8 log2 x
+

5

2
√
x
≤ 7

15
− log

5

4
.

This holds for all x ≥ 137,550. Finally, we verify using Mathematica that

1 + π(n) + π(
√
n)− 2k +

π(
√
n)∑

i=k+1

(
π

(
n

pi

)
− i
)
<

2n

3 log pk+1

holds for all integers 9 ≤ n < 137,550 and all pk ∈ [n2/5,
√
n]. Hence (6) holds in

the range x2/5 ≤ z ≤
√
x.

This completes the proof of our theorem.

We remark that (4) is best possible in the sense that for any fixed ε > 0, it is not

true that Φ(x, z) < (1 − ε)x/ log z holds uniformly in the entire range 1 < z ≤ x.

But when 2 ≤ z ≤
√
x, we expect that a somewhat stronger result holds, as we

have seen when y ≤ z ≤
√
x. It is possible to modify the proof to obtain (6) for
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all max(2, 3
√
x) ≤ z ≤

√
x. Applying this and the large sieve to the inequality [14,

Equation (III.6.17)]

Φ(x, z) ≤ Φ(x, 3
√
x) +

∑
z<p≤ 3

√
x

Φ

(
x

p
, p

)
+

x

bzc
,

we may deduce that Φ(x, z) < 0.8x/ log z holds uniformly in the range max(2, 4
√
x) ≤

z ≤ 3
√
x. However, it is perhaps even true that the stronger inequality Φ(x, z) <

0.6x/ log z holds uniformly in the range 2 ≤ z ≤
√
x, and a proof of this may require

careful application of sieves in certain explicit forms. By examining the final part

of the proof, we see that Φ(x, z) < Cx/ log z holds in the range y ≤ z ≤
√
x when

x is sufficiently large, where

C >
12

25
+

2

5
log

5

4
= 0.56925 . . .

is fixed but arbitrary. Furthermore, if M denotes the maximum value of ω(u) for

u ≥ 2, then de Bruijn’s result (2) implies that for any fixed ε > 0, we have

(1/2− ε) x

log z
< Φ(x, z) < (M + ε)

x

log z

for all sufficiently large z ≤
√
x. It is easy to see that

ω(u) =
log(u− 1) + 1

u

for all u ∈ [2, 3]. According to Mathematica, we should expect M = 0.56713 . . .

attained by ω(u) at u = 2.76322 . . . (which is the solution to the equation (u −
1) log(u− 1) = 1). It is perhaps true that for every ε > 0, the inequality Φ(x, z) <

(M + ε)x/ log z holds in the range 2 ≤ z ≤
√
x for all sufficiently large x depending

on the choice of ε only.
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